

Progress Report

J. Scott Berg
Brookhaven National Laboratory
10 July 2003
FFAG03, KEK

Effect of Input Parameters on Optimization

- Optimized lattice that I showed for 10–20 GeV had 28 cm time-of-flight range
- Dejan had a lattice with a 18 cm time-of-flight range
- What causes the differences?

	Dejan	Scott
D quad pole tip	8.4 T	7 T
F quad pole tip	10.2 T	7 T
Drift between quads	17 cm	50 cm
Gradient required for $w = 1/12$	2.15 MV/m	1.5 MV/m

- Increasing pole tip fields, reducing drift between quads, and increasing required gradient all result in reduction in time-of-flight range
- Make optimized lattice with 10.2 T pole tips, 17 cm drift between quads, and 2.15 MV/m: get 374 m ring with 15.3 cm time-of-flight range.

Optimum Time-of-Flight Range $v=1.5 \text{ MV/m}, w=1/12, L_{FD}=50 \text{ cm}$

Optimum Time-of-Flight Range $v=1.5 \text{ MV/m}, w=1/12, B_{\text{Pole}}=7 \text{ T}$

